skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Erickson, Meade"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The development of reusable polymeric materials inspires an attempt to combine renewable biomass with upcycling to form a biorenewable closed system. It has been reported that 2,5-furandicarboxylic acid (FDCA) can be recovered for recycling when incorporated as monomers into photodegradable polymeric systems. Here, we develop a procedure to better understand the photodegradation reactions combining density functional theory (DFT) based time-dependent excited-state molecular dynamics (TDESMD) studies with machine learning-based quantitative structure–activity relationships (QSAR) methodology. This procedure allows for the unveiling of hidden structural features between active orbitals that affect the rate of photodegradation and is coined InfoTDESMD. Findings show that electrotopological features are influential factors affecting the rate of photodegradation in differing environments. Additionally, statistical validations and knowledge-based analysis of descriptors are conducted to further understand the structural features’ influence on the rate of photodegradation of polymeric materials. 
    more » « less